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The magnetic field in rapidly rotating dynamos is spatially inhomogeneous. The axial variation of the
magnetic field is of particular importance because tall columnar vortices aligned with the rotation axis
form at the onset of convection. The classical picture of magnetoconvection with constant or axially
varying magnetic fields is that the Rayleigh number and wavenumber at onset decrease appreciably
from their non-magnetic values. Nonlinear dynamo simulations show that the axial lengthscale of the
self-generated azimuthal magnetic field becomes progressively smaller as we move towards a rapidly
rotating regime. With a small-scale field, however, the magnetic control of convection is different from
that in previous studies with a uniform or large-scale field. This study looks at the competing viscous
and magnetic mode instabilities when the Ekman number E (ratio of viscous to Coriolis forces) is
small. As the applied magnetic field strength (measured by the Elsasser number Λ) increases, the
critical Rayleigh number for onset of convection initially increases in a viscous branch, reaches an
apex where both viscous and magnetic instabilities co-exist, and then falls in the magnetic branch. The
magnetic mode of onset is notable for its dramatic suppression of convection in the bulk of the fluid
layer where the field is weak. The viscous–magnetic mode transition occurs at Λ ∼ 1, which implies
that small-scale convection can exist at field strengths higher than previously thought. In spherical
shell dynamos with basal heating, convection near the tangent cylinder is likely to be in the magnetic
mode. The wavenumber of convection is only slightly reduced by the self-generated magnetic field at
Λ ∼ 1, in agreement with previous planetary dynamo models. The back reaction of the magnetic field
on the flow is, however, visible in the difference in kinetic helicity between cyclonic and anticyclonic
vortices.

Keywords: Rapid rotation; Magnetoconvection; Two-scale convection; Geodynamo; Tangent cylinder;
Helicity generation

1. Introduction

In planetary dynamos, convective motions are affected by the combined effects of rotation
and the self-generated magnetic field. To improve our understanding of the dynamics in the
nonlinear dynamo, the magnetoconvection problem, where convection in rapidly rotating
systems is subject to an externally imposed magnetic field, is often studied. The simplest
problem of this kind is given by a rotating horizontal fluid layer heated from below and
permeated by a uniform magnetic field (Chandrasekhar 1961, Eltayeb 1972, Roberts and Jones
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2000). Following the theory of MAC waves (Braginsky 1967) that develop on the timescale of
the geomagnetic secular variation, it was thought that the principal force balance in the Earth’s
core is between the Magnetic, Archimedean (buoyancy) and Coriolis forces. The magnetic
Lorentz force aids convection in a rapidly rotating fluid by overcoming the Taylor-Proudman
constraint (Eltayeb 1972), which in practice means that the critical Rayleigh number for onset
of convection in a rotating fluid layer is smaller with a magnetic field than without a field. The
idea that the magnetic field can break the rotational constraint and make convection possible
implies that the ratio of the Lorentz to Coriolis forces, measured by the Elsasser number Λ, is
of order unity.

In differentially heated spherical shells where all the heat enters the bottom boundary and
there is no internal heating, the onset of rotating convection takes place near the tangent
cylinder (TC), an imaginary cylinder touching the inner boundary and parallel to the axis of
rotation (Dormy et al. 2004). Plane layer linear magnetoconvection with gravity g pointing
in the axially downward (negative z) direction ignores the curvature of the polar regions, but
is nevertheless a powerful tool in understanding TC magnetohydrodynamics. Convection in a
rapidly rotating magnetic layer sets in either as narrow viscous columns or large-scale magnetic
modes that fill a large fraction of the polar region (Chandrasekhar 1961), and these two patterns
of instability are clearly visible within the TC in nonlinear dynamo simulations at different
Rayleigh numbers (Sreenivasan and Jones 2005, 2006).

The case for using plane layer models to study spherical shell dynamo convection outside the
TC is less straightforward. With the sloping boundaries preventing perfect geostrophy and the
gravity vector pointing radially inward, spherical models differ geometrically and dynamically
from plane-layer models. In addition, the magnetic Hartmann layer on the spherical boundary
drives instabilities in an otherwise quiescent fluid (Zhang and Busse 1995), an effect not
considered in plane-layer models. Nevertheless, there is a broad consensus on the effect of
the magnetic field on the lengthscale of convection: spherical models predict that the main
dynamical effect of the magnetic field is to reduce the wavenumber of convection (Longbottom
et al. 1995, Jones et al. 2003), in line with plane layer models (Roberts and Jones 2000,
Stellmach and Hansen 2004). Early dynamo simulations suggest that the magnetic field may
thicken fluid rolls outside the TC (Kono and Roberts 2002), but simulations closer to the
rapidly rotating regimes of planetary cores (e.g. Sreenivasan 2010) show that the self-generated
magnetic field does not have any perceivable effect on the wavenumber of convection. This
discrepancy between linear magnetoconvection models and dynamo simulations has not been
adequately addressed, and may well be due to spatial inhomogeneities in the dynamo magnetic
field that are ignored in linear models for simplicity.

Because the shortest lengthscale of the onset solution in a spherical shell is in the azimuthal
(φ) direction (Sreenivasan and Jones 2011), the φ-component of the magnetic field is expected
to have the strongest effect on convection. The equatorially antisymmetric azimuthal magnetic
field produced in dipole-dominated spherical dynamos is axially inhomogeneous. Rapid rota-
tion confines the magnetic field into narrow regions either side of the equator, which can partly
explain why the field does not change the wavenumber of convection outside the TC. At the
same time, a small-scale magnetic field can in principle allow viscously controlled convection
is the bulk of the fluid layer, and perhaps trigger magnetically controlled convection where
the field is strong. In such a configuration, it is not clear what would be the nature of the back
reaction of the magnetic field on the flow. Previous models of plane-layer magnetoconvection
use horizontal fields that are either axially uniform or having lengthscales comparable to the
depth of the fluid layer. Among these models, some are inviscid (e.g. Kuang and Roberts 1990,
Tucker and Jones 1997, Marsenić and Sevcík 2010), and therefore only consider magnetically
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Figure 1. (a) Schematic of plane layer rotating magnetoconvection produced by a constant adverse temperature
gradient under a spatially varying horizontal magnetic field. (b) The profile of B0 in the layer from equation (1)
for decay length scales δ = 0.14 (red line) and δ = 0.4 (blue line). A large-scale magnetic field profile using
f (z) = z(1 − z2) (black line) is given for comparison.

driven instabilities. Among the viscous models, Roberts and Jones (2000) use a uniform
magnetic field, whereas Stellmach and Hansen (2004) use a spiral staircase structure. As large-
scale convection sets in under large-scale magnetic fields even at small Elsasser number Λ, one
might assume that planetary cores comfortably operate in the magnetic mode of convection,
where the Lorentz force directly breaks the Taylor-Proudman constraint. However, with small-
scale magnetic fields it is possible that the viscous mode of convection persists up to Λ ∼ 1
and eventually gives way to the magnetic mode.

In this paper, we use plane layer magnetoconvection models to examine the role of a small-
scale magnetic field in rapidly rotating convection, where the ratio of viscous to Coriolis forces
(given by the Ekman number) is small. The linear onset study is followed by moderately
supercritical spherical shell dynamo simulations, where the structure of convection outside the
tangent cylinder is investigated.

2. Rotating convection with an axially varying horizontal magnetic field

2.1. Problem set-up and governing equations

We consider an electrically conducting fluid in a plane layer of infinite horizontal extent with
rotation about the z-axis. The imposed horizontal (x) field goes to zero at the bottom boundary
and has a finite axial lengthscale (figure 1). The magnetic field is of the form

B0 = B0 f (z)x̂ , f (z) = z exp
(−z2/δ2), (1)

where B0 is a reference magnetic field strength and δ is the axial decay lengthscale of the
magnetic field. The lengthscale δ takes on small values under rapid rotation, but this effect
has been largely ignored in previous models of magnetoconvection. When intense azimuthal
magnetic fields are confined to narrow regions, the nature of convective onset can differ
significantly from that for a large-scale magnetic field permeating the fluid layer.

The magnetoconvective instability of the system is studied by considering small perturba-
tions to the basic states of velocity, magnetic field, pressure and temperature:

U = u, B = B0 + b, P = P0 + p, T = T0 − βz + θ, (2)
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where β is the basic state temperature gradient across the fluid layer. To obtain the perturbation
equations in dimensionless form, lengths are scaled by the layer thickness d , time is scaled by
d2/η where η is the magnetic diffusivity, temperature is scaled by βd , velocity is scaled by η/d
and the magnetic field is scaled by the reference field, B0. In the Boussinesq approximation,
the following linearized magnetohydrodynamic (MHD) equations govern the system:

E Pm−1 ∂u
∂t

+ ẑ × u = − ∇ p + Λ
[
(∇ × B0) × b + (∇ × b) × B0

]

+ Pm Pr−1 RaEθ ẑ + E∇2u , (3)
∂b
∂t

= ∇ × (u × B0) + ∇2b , (4)

∂θ

∂t
= u· ẑ + Pm Pr−1∇2θ , (5)

∇·u = 0 , (6)

∇·b = 0 . (7)

The dimensionless parameters in these equations are the Ekman number E , Rayleigh number
Ra, Elsasser number Λ, Prandtl number Pr and magnetic Prandtl number Pm, which are
defined as follows:

E = ν

2Ωd2
, Ra = gαβd4

νκ
, Λ = B2

0

2Ωρμ0η
, Pr = ν

κ
, Pm = ν

η
, (8)

where ν is the kinematic viscosity, ρ is the density, κ is the thermal diffusivity, α is the
coefficient of thermal expansion, g is the gravitational acceleration, Ω is the angular velocity
of background rotation and μ0 is the magnetic permeability. The ratio Pm Pr−1 is also called
the Roberts number, q . By applying the operators (∇×) and (∇ × ∇×) to the momentum
equation (3) and (∇×) to the induction equation (4) and taking the z-components of the
equations, the behaviour of the five perturbation variables – velocity, vorticity, magnetic field,
electric current density and temperature – can be obtained. Solutions are sought in the form of
normal modes

[uz, ωz, bz, jz, θ ](x, y, z, t) = [W (z), Z(z), B(z), J (z),Θ(z)] exp[i(kx + ky) + st], (9)

where kx and ky are wave numbers in x and y directions and s is a complex frequency.

The horizontal wavenumber is k =
√

k2
x + k2

y . After introducing this solution into our set of
equations (3)–(5), we obtain the following system of ordinary differential equations:

E Pm−1s(∇2W ) = − k2q E RaΘ + E(D2 − k2)2W − Λ f ′′(z)ikx B

+ Λ f (z)ikx (D
2 − k2)B − DZ , (10)

E Pm−1s Z = E(D2 − k2)Z + DW + Λ f (z)ikx J − Λ f ′(z)iky B , (11)

s B = (D2 − k2)B + f (z)ikx W , (12)

s J = f (z)ikx Z + f ′(z)iky W + (D2 − k2)J , (13)

sΘ = W + q(D2 − k2)Θ , (14)

where D = d/dz.
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2.2. Boundary conditions

The stability calculations in this paper are performed with stress-free conditions for the flow
at the top and bottom of the fluid layer. Electromagnetic conditions are mixed (perfectly
conducting at the bottom and insulating at the top). However, to show that the main results
of this study are not influenced by the boundary conditions, a few calculations at low Ekman
number are performed with no-slip as well as perfectly conducting/insulating conditions at both
walls. As isothermal conditions are maintained for the basic state, the temperature perturbation
vanishes at the top and bottom. The boundary conditions are implemented as follows:

W = D2W = DZ =0 at z = 0, 1 (stress-free), (15)

W = DW = Z =0 at z = 0, 1 (no-slip), (16)

B = DJ =0 at z = 0 (bottom perfectly conducting), (17)

DB + k B = J =0 at z = 1 (top insulating), (18)

B = DJ =0 at z = 0, 1 (both walls perfectly conducting), (19)

DB ± k B = J =0 at z = 0, 1 (both walls insulating), (20)

Θ =0 at z = 0, 1. (21)

2.3. Method of solution and benchmark

The input parameters for the model are E , Λ, Pr and Pm. We examine magnetoconvection
regimes for the parameters E = 2.5 × 10−4–10−8, Λ = 0 − 12, Pr = 1 and Pm = 1. With
temporal derivatives in the governing equations, onset of stationary convection occurs for
Im{s} = 0 and oscillatory onset is marked by Im{s} �= 0 (Re{s} = 0 yields the marginal state
in either case). For a range of given Rayleigh numbers Ra, a bisection algorithm is employed
to obtain the complex eigenvalue s. The Rayleigh number corresponding to the marginal state
gives the critical Rayleigh number Rac. The eigenvalue problem A X = λ B X, where λ = s
and X = [W, Z , B, J,Θ], is solved using Matlab. A Chebyshev spectral collocation method
is employed to decompose the eigenfunctions along z.

As shown in figure 2, our code accurately reproduces the oscillatory (overstable) onset of
convection for Roberts number exceeding unity (q = 2.3), previously obtained in plane layer
magnetoconvection at moderately large Ekman number (Roberts and Jones 2000). Since the
stability calculations in our study use q = 1 throughout, we obtain purely stationary onset of
convection. The onset of oscillatory convection with spatially varying magnetic fields is not
considered as part of this study.

2.4. Properties of magnetoconvection at low Ekman number

The main result of this study is that the onset of magnetoconvection at low Ekman number
often takes place with two competing modes of instability that co-exist – a large wavenumber
viscous mode and a small wavenumber magnetic mode. Crucially, this two-scale onset is absent
at high Ekman numbers, which implies that it is uniquely relevant to rapidly rotating regimes
where the viscous force is small in comparison with the Coriolis force. We begin by looking
at the Rac–Λ regime diagram for E = 10−8, Pm = Pr = 1 and a spatially varying magnetic
field B0 of small decay lengthscale, δ = 0.14. From figure 3(a), we find that Rac decreases
briefly with increasing Λ, then increases until an apex (marked ‘O’) is reached, and thereafter
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Figure 2. Benchmarked neutral (Ra–k) curves for the onset of magnetoconvection with spatially uniform horizontal
magnetic fields acting on a rotating plane layer. The boundaries are stress-free and treated as perfect conductors of
electric current. The black curve with the dashed branch shows stationary onset at k = 3.12, whereas the blue branch
shows oscillatory onset at k = 4.8 for the same set of parameters (E = 10−3, Λ = 2, q = Pm Pr−1 = 2.3 and
ky = 0). The red curve shows purely stationary onset at k = 2.498 for the parameters E = 10−3, Λ = 0.7, q = 1
and ky = 0.

decreases continuously over a range of Λ. Figure 3(a) shows the limited range Λ = 0−1.5 for
clarity, but the critical parameters (Rac, kc) up to Λ = 12 are listed in table 1. Figures 3(b–f)
show the neutral (Ra–k) curves at points P and A on the rising branch, at the apex O, and at
points C and Q in the falling branch. At point P, convection sets in at a large wavenumber that
is not very different from the critical wavenumber for non-magnetic convection, which means
that the lengthscale of convective rolls is controlled by viscosity. At point A (Λ = 0.45), a
well-defined magnetic mode exists at small wavenumber, although the viscous mode is still
dominant (figure 3(c)). At the apex O (Λ = 0.545), both viscous and magnetic modes have
exactly the same Rac, and therefore must co-exist as equally unstable modes (figure 3(d)). At
point C (Λ = 0.65), the magnetic mode has overtaken the viscous mode as the most unstable
(figure 3(e)). The dominance of the magnetic mode instability continues to hold at point Q
(figure 3(f)). Table 1 presents the critical parameters at various points on the regime diagram
for E = 5 × 10−6, which is similar in pattern to that for E = 10−8.

The axial velocity uz in the marginal state (figures 4(a–d)) undergoes dramatic transitions
as we travel along the regime diagram. For classical non-magnetic convection (Λ = 0), neatly
packed columns that extend from z = 0 to z = 1 are obtained. At point A on the rising branch,
the critical wavenumber of the flow is large, but slightly smaller than that for non-magnetic
convection (table 1). Convection is suppressed in the bottom region where the magnetic field is
strong (figure 4(b)). The viscous-mode instability is clearly dominant, although the magnetic
field affects the flow at onset. At the apex O, where both viscous and magnetic modes are
equally unstable, the axial velocity is a linear superposition of two eigenfunction terms

uz = A1W1(z) exp(ikx1x) + A2W2(z) exp(ikx2x), (22)

where W1 and W2 are the eigenfunctions of z-velocity at the viscous and magnetic modes, and
kx1 and kx2 are the respective critical x-wavenumbers. We choose A1 = A2 = 1 to obtain
the flow in figure 4(c). The large-scale flow in a narrow region at the bottom (∼20% of the
fluid layer) is magnetic-controlled, whereas the small-scale flow at the top (∼80%) is viscous-
controlled. Now, as Λ is increased slightly, the instability is entirely in the magnetic mode –
in this regime, the small-scale flow is completely wiped out, leaving only the large-scale flow
at the bottom (figure 4(d)). A horizontal magnetic field can therefore confine convection to
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(a) (b)

(d)(c)

(e) (f)

Figure 3. Plot (a) contains Rac vs. Λ for E = 1 × 10−8 and δ = 0.14. Plots (b), (c), (d), (e) and (f) show the neutral
curves extracted at points P, A, O, C and Q respectively on the regime diagram in (a).

a narrow region where the field is strong. It is remarkable that the change in flow structure
from figures 4(b–d) takes place over a small range of Λ. From a comparative study of different
Ekman numbers (section 2.5), it is clear that the suppression of large wavenumber convection
by the magnetic field is a distinctly low Ekman number phenomenon. The axial velocity for
the case E = 5 × 10−6 with δ = 0.3 follows a very similar pattern, except that the critical
wavenumbers are larger (table 1) and the large-scale flow in the magnetic mode extends up to
∼40% of the fluid layer from the bottom (figures 5(a–d)).

A note on the robustness of the twin-mode instability is appropriate at this point. Figures
6(a,b) compare three electromagnetic boundary conditions, with the flow boundary conditions
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Table 1. Rayleigh numbers (Rac) and wavenumbers (kc) for marginal state (critical) convection,
computed for Elsasser numbers (Λ) in the range 0–12.

E = 10−8 E = 5 × 10−6

(δ = 0.14) (δ = 0.3)

Λ Rac kc Λ Rac kc

0 4.0363 × 1011 605.6 0 1.0188 × 108 76
0.1 3.0466 × 1011 490 0.1 9.4095 × 107 67
0.3 3.2274 × 1011 499 0.3 1.0009 × 108 62
0.45 (A) 3.2890 × 1011 501 0.5 1.1021 × 108 63
0.545 (O) 3.3175 × 1011 51.1; 502.7 0.59 1.1352 × 108 63.5
0.65 (C) 2.9744 × 1011 46 0.69 (O) 1.1663 × 108 22.8; 64.2
0.8 2.6388 × 1011 41 0.79 1.1063 × 108 21
1.0 2.3477 × 1011 37 1.0 9.9991 × 107 18
1.3 2.0790 × 1011 32 1.3 8.9961 × 107 15
1.5 1.9608 × 1011 30 1.5 8.5309 × 107 14
2.0 1.7723 × 1011 26 2.0 7.7753 × 107 12
5.0 1.4879 × 1011 17 5.0 6.5879 × 107 8
6.4 1.4705 × 1011 16 6.4 6.5510 × 107 7
7.0 1.4685 × 1011 15 7.0 6.5163 × 107 7
7.12a 1.4683 × 1011 15 7.2 6.5136 × 107 7
7.2 1.4684 × 1011 15 7.24a 6.5135 × 107 7
7.4 1.4691 × 1011 15 7.4 6.5146 × 107 7
8.0 1.4729 × 1011 14 8.0 6.5375 × 107 7
10.0 1.4893 × 1011 14 10.0 6.6316 × 107 6
12.0 1.5098 × 1011 13 12.0 6.7393 × 107 6

Notes: The linear stability runs are performed at two Ekman numbers (E), for Pr = Pm = 1, and with axially
varying horizontal magnetic fields of lengthscale δ (equation (1)). The letter O refers to the apex and A, C are points
to the left and right of the apex in the Rac–Λ regime diagram (figure 3(a)). Viscous and magnetic modes of instability
co-exist at point O.
aAlso note the existence of an absolute minimum in Rac for both Ekman numbers.

maintained stress-free. The regime diagram for insulating boundaries deviates slightly from
the other two, but the co-existence of viscous and magnetic modes (marked by apex formation)
holds at the same Λ for all three conditions. Furthermore, the neutral curves at any Λ overlap
with one another and show two minima, showing that the co-existence of two unstable modes
is practically insensitive to whether the boundaries are insulating, perfectly conducting or a
combination of both. Figures 6(c,d) compare no-slip and stress-free boundary conditions for the
flow, with the electromagnetic boundary conditions kept mixed. Although the regime diagrams
and neutral curves for the two conditions do not exactly overlap, the two-mode solution with a
sharp transition between the modes is obtained.As the stress-free solutions are computationally
less expensive than the no-slip solutions, it makes sense to use stress-free boundary conditions
to study linear onset at low Ekman number.

The dependence of the marginal state on the magnetic Prandtl number Pm is shown in
figure 7, for E = 5 × 10−6, δ = 0.3 and Λ = 1.4. The neutral stability curve develops three
minima as Pm is increased, but the lowest minimum that represents the stationary magnetic
mode of onset remains unchanged in the range Pm = 1−5. For Pm ≥ 6, however, oscillatory
onset at a higher wavenumber is obtained.
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(b)

(d)

(a)

(c)

Figure 4. Shaded contour plots of the axial velocity at four points on the Rac–Λ regime diagram (figure 3(a)), for the
fixed parameters E = 10−8 and Pr = Pm = 1. A restricted range of x is chosen for clarity. (a) Λ = 0 (non-magnetic
convection); (b) Λ = 0.45 (Point A); (c) Λ = 0.545 (Apex O); (d) Λ = 0.65 (Point C).

2.5. The role of magnetic field lengthscale in convection

We now look at how different lengthscales of the magnetic field affect the pattern of convection
in a plane layer. For the lowest Ekman number (E = 10−8), small field lengthscales (δ ∼
0.1 − 0.25) produce a regime diagram with the apex marking the transition from viscous to
magnetic mode instability (figure 8(a)). For a small field lengthscale δ = 0.12, the apex forms
at Λ ≈ 1, which is when the Lorentz and Coriolis forces are thought to be in approximate
balance. The critical wavenumber kc at the apex expectedly falls sharply from its large viscous-
mode value to a small magnetic-mode value (figure 8(b)). However, for larger field lengthscales
(δ = 0.3, 0.5; shown in dashed blue and dashed red lines), Rac and kc decrease appreciably at
small Elsasser numbers (Λ ∼ 0.1) and then decrease gradually. The fact that the entry to the
magnetic mode at Λ ≈ 1 happens only for small field lengthscales is in qualitative agreement
with nonlinear dynamo simulations at low Ekman number and Λ ≈ 1, where the azimuthal
magnetic field naturally assumes a small-scale structure (section 3). For E = 5×10−6 (figures
8(c,d)), the solutions are similar to that for E = 10−8, except for two differences: the apex
solutions at Λ ≈ 1 happen for larger field lengthscales; and apex formation takes Rac above
its critical value for non-magnetic convection (shown by the black dotted line). It is therefore
likely that the magnetic mode is displaced to a point at the right of the apex where Rac falls
below its non-magnetic value. Dynamo simulations (section 3) suggest that large magnetic
field lengthscales (δ � 0.5) are unlikely to form at this Ekman number.

For higher Ekman numbers (E = 5×10−5 and 2.5×10−4), large-scale magnetic fields look
physically reasonable. For E = 5 × 10−5, an apex solution is obtained for a decay lengthscale
δ = 0.3 (blue dashed lines in figures figures 9(a,b)); however, Rac for magnetic cases con-
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(a) (b)

(c) (d)

Figure 5. Shaded contour plots of the axial velocity at four Elsasser numbers, for the fixed parameters E = 5×10−6

and Pr = Pm = 1. (a) Λ = 0 (non-magnetic convection); (b) Λ = 0.59; (c) Λ = 0.69 (Apex); (d) Λ = 0.79. The
critical parameters (Rac, kc) at these points are given in table 1.

sistently exceeds its non-magnetic value, which is unrealistic for rotating magnetoconvection
(Chandrasekhar 1961, Eltayeb 1972). The behaviour at higher δ (0.5 − 0.7) is realistic in that
both Rac and kc decrease progressively with Λ, in good agreement with the classical picture
of large-δ magnetoconvection where the transition from the viscous to magnetic modes of
instability is smooth (Longbottom et al. 1995, Roberts and Jones 2000, Chuxin and Xiaocheng
2003). For large δ, convection fills the entire fluid layer in both modes of instability, unlike
in the apex solutions where the magnetic mode wipes out convection in regions with weak
magnetic field. For E = 2.5 × 10−4 (figures 9(c,d)), no apex solution is obtained even for
small δ. The magnetic mode for large δ is once again marked by a progressive reduction of Rac

and kc with Λ. Nonlinear dynamo simulations at moderately high Ekman numbers (section 3)
indicate that the lengthscales of the azimuthal magnetic field are naturally larger than at lower
Ekman numbers.

Figure 10 provides a study of the effects of large-scale and small-scale horizontal magnetic
fields on rapidly rotating convection (E = 10−8). The non-magnetic cases (shown with black
circle markers) provide the reference against which comparisons can be made. For a large
magnetic field decay lengthscale (δ = 0.6), the axial velocity is significantly greater than its
non-magnetic value (figure 10(a)), an effect that is reflected in the dramatic increase in kinetic
helicity over the non-magnetic case (figure 10(c)). A different large-scale field of the algebraic
form f (z) = z(1 − z2) also produces a strong augmentation in kinetic helicity. However,
the effect of decreasing δ on helicity generation has not been addressed, either in planar or in
spherical geometry. To understand this effect, we consider the case with a small-scale magnetic
field (δ = 0.14) and look at the viscous, mixed and magnetic modes of instability separately
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(a) (c)

(d)(b)

Figure 6. (a) Rac–Λ regime diagram for E = 10−8, δ = 0.14 and stress-free boundaries, comparing three
electromagnetic boundary conditions. Both boundaries perfectly conducting (red marker), both boundaries insulating
(blue line), and mixed with bottom perfectly conducting and top insulating (black line). (b) Neutral curve at Λ = 1
of plot (a), comparing the same conditions (with respective line styles). (c) Rac–Λ diagram comparing stress-free
(dashed blue) and no-slip (solid blue) boundary conditions for the flow. Mixed electromagnetic conditions are applied.
(d) Neutral curve at Λ = 1.5 of plot (c), comparing the same conditions.

Figure 7. Neutral stability curves for E = 5 × 10−6, Pr = 1, Λ = 1.4 and δ = 0.3. The cases shown are (a)
Pm = 1 (red), (b) Pm = 3 (dashed black) and (c) Pm = 5 (blue).

(figures 10(d–f)). For the viscous mode (blue) the velocity is zero in the bottom region where
flow is suppressed; for the mixed mode (red) the velocity increases sharply in the bottom region
where the flow picks up strength; and in the magnetic mode (green) the velocity drops to zero
for much of the upper region as convection is suppressed in the top 80% of the fluid layer.
The patterns of velocity (figure 10(d)) and vorticity (figure 10(e)) are reflected in the kinetic
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(a) (c)

(d)(b)

Figure 8. (a) Rac–Λ regime diagram for E = 10−8 and different lengthscales of the imposed magnetic field, δ.
Lengthscales (with line style in brackets): 0.12 (red), 0.16 (blue), 0.2 (black), 0.3 (dashed blue), 0.5 (dashed red). (b)
Critical wavenumber diagram (kc–Λ) for the same cases as (a), with respective line styles. (c) Rac–Λ diagram for
E = 5 × 10−6. Lengthscales (with line style in brackets): 0.3 (red), 0.35 (blue), 0.4 (black), 0.5 (dashed blue), 0.6
(dashed red). (d) kc–Λ diagram for the same cases as (c), with respective line styles. The black dotted line in each
plot shows the reference critical value for the non-magnetic case.

helicity (figure 10(f)), where it is clear that the small-scale magnetic field does not offer any
advantage in terms of enhanced helicity generation over the non-magnetic case. We find later
from dynamo simulations that the self-generated magnetic field affects the helicity distribution
appreciably even when the field lengthscale is small.

We conclude our discussion of linear magnetoconvection by noting the existence of an
‘absolute minimum’ in the critical Rayleigh number, Rac. Some early studies (Eltayeb and
Kumar 1977, Fearn 1979) have confirmed the existence of a minimum for Rac, which implies
that above a critical value of the Elsasser number Λ, as the Lorentz force exceeds the Coriolis
force by a significant margin, the magnetic field inhibits convection. However, studies in
spherical geometry (Zhang and Jones 1994, Longbottom et al. 1995) with imposed magnetic
fields that satisfy the appropriate boundary conditions show that there is no optimal state of
magnetoconvection marked by a minimum for Rac. Rather, there is a monotonic decay of
Rac with Λ. For Λ ∼ 10, the imposed magnetic field itself becomes unstable and drives
fluid motion; consequently, it is not possible to have an absolute minimum. The Earth is
therefore likely to operate in a Λ ∼ 1 regime where the magnetic field is stable (Zhang and
Jones 1994). In our study, an absolute minimum exists for Rac as in previous plane-layer
models, but at Λ ≈ 7 (table 1). As the regime where the Lorentz and Coriolis forces are in
approximate balance (Λ ≈ 1) is far from this minimum, we conclude that the Earth’s core
where this balance is expected to hold operates in a regime where the magnetic field promotes
convection.
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(a) (c)

(d)(b)

Figure 9. (a) Rac–Λ regime diagram for E = 5 × 10−5 and different lengthscales of the imposed magnetic field,
δ. Lengthscales (with line style in brackets): 0.3 (dashed blue), 0.4 (red), 0.5 (black), 0.6 (blue), 0.7 (dashed red). (b)
Critical wavenumber diagram (kc–Λ) for the same cases as (a), with respective line styles. (c) Rac–Λ diagram for
E = 2.5 × 10−4. Lengthscales (with line style in brackets): 0.4 (dashed blue), 0.5 (red), 0.6 (black), 0.7 (blue), 0.8
(magenta). (d) kc–Λ diagram for the same cases as (c), with respective line styles. The black dotted line in each plot
shows the reference critical value for the non-magnetic case.

Figure 10. Eigenfunctions of the axial velocity (W ), axial vorticity (Z ) and axial helicity (H ) plotted as a function
of z, for E = 1 × 10−8 and q = 1. The magnetic field lengthscale, δ = 0.14. Line styles for (a)–(c): Non-magnetic
convection (black marker), magnetoconvection with field length scale δ = 0.6 (red line), magnetoconvection with
field variation of the form f (z) = z(1 − z2) (blue line). (d)–(f): Non-magnetic convection (black marker); blue, red
and green lines represent eigenfunctions at points A,O,C (before, at and after the apex, marking the viscous, mixed
and magnetic modes respectively) in the Rac–Λ regime diagram (figure 3(a), obtained for δ = 0.14).
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Table 2. Dimensional parameters used and magnetic field diagnostics computed in the dynamo models.

E Ra Ra/Rac Rm Em/Ek Λ E AD l̄B δ(s = 0.54)

2.5 × 10−4 95.0 5 87.45 3.57 2.25 55.2 6.59 0.52
5 × 10−5 115.0 4 126.86 5.93 1.55 68.6 9.24 0.44
5 × 10−6 192.5 3.3 255.18 12.56 1.39 53.6 16.76 0.3

Notes: The parameter definitions are as in (8) except that the Rayleigh number Ra = gα�T d/2νκ is the product
of the classical Rayleigh number and the Ekman number, and the computed Elsasser number Λ = B2/2Ωρμ0η is
based on the volume-averaged magnetic field. The other fixed internal parameters are Pr = 1 and Pm = 3. Rac is
the critical Rayleigh number for convection, Rm is the magnetic Reynolds number, Em is the total magnetic energy,
Ek is the total kinetic energy, E AD is the ratio (in percent) of the axial dipole magnetic energy to the total magnetic
energy at the outer boundary, l̄B is the characteristic wavenumber of the magnetic field (derived from the magnetic
energy spectrum) and δ is the axial lengthscale of the self-generated azimuthal magnetic field.

3. Nonlinear dynamo simulations

As the magnetic field in nonlinear dynamo simulations is self-generated, producing magnetic
fields of Elsasser number Λ ∼ 1 with marginally supercritical convection necessitates a large
magnetic Prandtl number Pm, so that the magnetic diffusivity η is smaller than the viscous
diffusivity ν (see, e.g. Willis et al. 2007). Here we essentially compensate for the weak energy
input by allowing a relatively large electrical conductivity for the fluid. While setting up linear
magnetoconvection at large Λ and Pm = 1 (as in table 1), we must realize that obtaining
such strongly magnetic regimes at Ra/Rac ≈ 1 in dynamo models requires large Pm. In this
study, we consider three models: the Ekman number varies by a factor of 50 from maximum
to minimum, the Rayleigh number is moderately supercritical so that the dynamical behaviour
does not depart significantly from that at onset, and the choice of Pm = 3 makes the Elsasser
number Λ ∼ 1 in all models (see table 2). We recall that, for E = 5 × 10−6 both Pm = 1 and
Pm = 3 have the same marginal state solution at Λ = 1.4 (figure 7), so the dynamo regime at
E = 5 × 10−6 and Pm = 3 is not qualitatively different from the magnetoconvection regime
at the same Ekman number and Pm = 1.

The dynamo models solve the coupled magnetohydrodynamic (MHD) equations for mo-
mentum, magnetic induction and temperature (Sreenivasan et al. 2014) in a spherical shell of
radius ratio 0.35. Convection is driven by a superadiabatic temperature difference between
the inner and outer boundaries, where electrically insulating and no-slip conditions are also
satisfied. By focusing on regions near and away from the TC, we seek to understand the effect
of the self-generated magnetic field on convection.

Figure 11 shows plots of the azimuthal magnetic field Bφ and on time and azimuthal average
for the three dynamo models. The equatorially antisymmetric structure of Bφ corresponds to a
dominant axial dipole magnetic field, and is a robust feature of numerical dynamos in a large
region of the parameter space (Sreenivasan and Jones 2011). (The fact that the magnetic field
is dominated by the axial dipole is evident from the fraction of the magnetic energy at the outer
boundary contained in the dipole; see table 2). Furthermore, Bφ appears confined to smaller
axial lengthscales as the Ekman number E is decreased. Figure 12 shows the change in the
axial lengthscale of Bφ with E on a cylindrical section of radius s = 0.54, just outside the TC.
It is readily confirmed that lowering E results in a magnetic field with smaller axial lengthscale.
Magnetic field stretching via differential rotation (quantified by Bz∂uφ/∂z in cylindrical polar
coordinates) has a very similar structure to that of Bφ , which implies that the Ω-effect is an
important mechanism for azimuthal field generation at the TC (figure 12). Outside the TC, the
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(a) (b) (c)

Figure 11. Meridional section plots averaged over longitude and time of the azimuthal magnetic field Bφ at different
Ekman numbers. Sections 1 − 1′ and 2 − 2′ correspond to cylindrical radii s = 0.54 and s = 1.0.

(a) (c)

(b) (d)

Figure 12. Time-averaged cylindrical (z −φ) section plots of the azimuthal magnetic field Bφ (upper panel) and the
magnetic field stretching Bz∂uφ/∂z (lower panel) for two Ekman numbers. The field is shown at cylindrical radius
s = 0.54, whereas the stretching term is shown at a radius that lies just outside the Ekman layer at the inner boundary.

field and the stretching term can be oppositely signed (Olson et al. 1999) or of the same sign
if differential rotation is strong (Schrinner et al. 2012).

In figure 13 we visualize the structure of convection on two cylindrical sections – just
outside the TC (s = 0.54) and s = 1. The axial kinetic energy density u2

z is studied as it offers
more clarity in plotting than the axial velocity itself. The dynamo calculations are compared
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 13. Time-averaged cylindrical (z − φ) section plots of the axial kinetic energy density u2
z . For each Ekman

number, three plots are shown from top to bottom: Non-magnetic convection (s = 0.54), dynamo (s = 0.54) and
dynamo (s = 1.0). The cylindrical sections are marked in figure 11.

with non-magnetic calculations, where the field strength Λ is scaled down to a very small
value and only the momentum and temperature equations are stepped forward in time. For
E = 5 × 10−6, the magnetic (dynamo) and non-magnetic cases have different structures at
s = 0.54 (figures 13(a,b)): The axial energy in the dynamo is concentrated in narrow patches
either side of the equator, whereas the flow in the non-magnetic case fills a larger depth of the
layer. The suppression of convection near the TC in the dynamo is reminiscent of the magnetic
mode instability in the plane layer (figure 5(d)). The structure of convection is dependent
on the axial lengthscale of the magnetic field – for higher Ekman number runs where the
azimuthal field takes on larger lengthscales along z, convection progressively fills the fluid
layer (figures 13(e,h)), so the difference between the magnetic and non-magnetic cases is small.
Further radially outward from the TC (s = 1.0), convection fills the entire fluid layer at all
Ekman numbers (figures 13(c,f,i)), practically unaffected by the magnetic field lengthscale.
(The non-magnetic plots at s = 1 look very similar to the magnetic plots and hence are not
shown).

Figures 13(a,b) (for E = 5 × 10−6) also show that the maximum axial kinetic energy for
the dynamo is larger than that for the non-magnetic run, an effect that is not obvious at higher
Ekman numbers. The ratio of the axial to the total kinetic energy, Ez/Etot supports this picture:
for the lowest Ekman number, the dynamo calculation has more energy channelled into the axial
flow than the non-magnetic calculation (table 3), consistent with linear magnetoconvection
theory that predicts enhanced z-energy in the limit of E → 0 (Sreenivasan and Jones 2011).
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Table 3. Computed characteristic wavenumber of convection, l̄u and the fraction of the total kinetic
energy contained in the axial (z) mode.

Ez/Etot Ez/Etot Ez/Etot
E l̄u (shell) (s = 0.54) (s = 1.0)

2.5 × 10−4 8.57 (9.99) 0.26 (0.25) 0.25 (0.20) 0.31 (0.30)
5 × 10−5 10.95 (12.98) 0.21 (0.20) 0.21 (0.15) 0.24 (0.24)
5 × 10−6 20.98 (25.36) 0.23 (0.18) 0.23 (0.14) 0.27 (0.24)

Note: The non-magnetic values are given in brackets for comparison with the dynamo values.

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 14. Isosurface snapshots of the axial velocity uz , with positive (red) and negative (blue) shown in separate
panels. The parameters used are E = 5 × 10−6, Pr = 1, Pm = 3 and Ra/Rac = 3.3 (a) and (b): non-magnetic run
with a contour level of 30 % of the peak values (±823). (c)–(h): magnetic run with peak values (−719, 728). Contour
levels for (c) and (d) are 25% peak, (e) and (f) 35% peak and (g) and (h) 45% peak.

However, closer examination reveals that the augmentation in Ez/Etot for the dynamo occurs
largely near the TC (s = 0.54), and futher radially outward (s = 1.0) the z-energy fractions
in the magnetic and non-magnetic runs are approximately equal.

Table 3 also gives the characteristic wavenumber of convection l̄u for the dynamo and non-
magnetic runs, obtained as a weighted average from the kinetic energy spectrum (see e.g.
Soderlund et al. 2012). For all Ekman numbers, the dynamo-generated magnetic field causes
only a modest reduction in l̄u from its non-magnetic value, in agreement with recent planetary
dynamo simulations (Soderlund et al. 2012). However, this result is at variance with cartesian
dynamo models (Stellmach and Hansen 2004) that show an appreciable increase in the flow
lengthscale even for small Elsasser numbers. It is possible that the transition from the viscous
to the magnetic mode happens at higher Elsasser numbers in spherical shell dynamos, but this
point needs further investigation with the help of spherical magnetoconvection models.

To understand the magnetic control of convection in a spherical shell dynamo, we look at
volume plots of isosurfaces of the axial velocity, uz . For non-magnetic convection, both positive
(red) and negative (blue) velocities are evenly distributed over the volume (figures 14(a,b)). In
contrast, the saturated state (Λ ∼ 1) of the dynamo shows that positive velocities are favoured
in the upper hemisphere, whereas negative velocities dominate in the lower hemisphere. The
asymmetry between the two signs of velocity is marked over a range of contour levels (figures



584 V. Gopinath and B. Sreenivasan

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 15. Time-averaged isosurfaces of axial helicity, with anticyclonic helicity in the upper panel and cyclonic
helicity in the lower panel. The parameters used are E = 5×10−6, Pr = 1, Pm = 3 and Ra/Rac = 3.3. (a) and (b):
non-magnetic state with contour levels ±5 × 105. (c)–(h): saturated axial dipole state with contour levels ±3 × 105

(c,d), ±7 × 105 (e,f), ±1 × 106 (g,h).

14(e–h)), and is attributed to the magnetic (M)–Coriolis (C) term interaction in the z-vorticity
equation (Sreenivasan et al. 2014). The effect of the dipole magnetic field also shows up in
the distribution of z-vorticity, with anticyclonic vorticity preferred over cyclonic vorticity. The
asymmetry in velocity and vorticity are in phase, producing an amplified asymmetry in the
kinetic helicity. Figure 15 shows the time-averaged volumetric distribution of axial kinetic
helicity contained in anticyclones and cyclones in separate panels. For the non-magnetic run,
both cyclonic and anticyclonic helicity are present in equal measure (figures 15(a,b)). However,
in the saturated dipole state, there is a notable preference for anticyclonic helicity (figures
15(c–h)). In summary, a low-E , Λ ∼ 1 dipolar dynamo has self-generated helicity, even as
the magnetic field does not appreciably change the wavenumber of convection.

4. Concluding remarks

The magnetic field in rapidly rotating dynamos is inhomogeneous in nature. While radial (s)
and azimuthal (φ) inhomogeneities in the magnetic field can modify the flows in nonlinear
dynamos, the axial (z) variation is of particular importance in rapid rotation, since tall fluid
columns form at onset of convection. The fact that the magnetic field in rapidly rotating
dynamos is confined to narrow regions near the equator has largely motivated our study. In
this paper, we consider plane-layer magnetoconvection under vertical gravity and horizontal
magnetic fields of controllable axial lengthscale. The ability of plane layer models to reach
very low Ekman numbers makes them useful in the study of MHD regimes unreachable by
present-day dynamo models.

In the rapidly rotating (low-E) regime, a sharp transition is noted between the viscous and
magnetic instability modes in the Rac–Λ regime diagram, and interestingly, the viscous mode
can exist up to Λ ∼ 1. The magnetic mode of instability is notable for its complete suppression
of convection in the weak-field region, which indicates that columnar convection is supported
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only in the viscous mode. As rapid rotation naturally confines the azimuthal magnetic field to
small lengthscales, the large-lengthscale linear solutions at low E , although mathematically
admissible, may not be physically meaningful.

In the spherical dynamo simulation at E = 5×10−6 and Λ ≈ 1.4, the region close to the TC
(s = 0.54) is marked by suppression of convection and an increase in the axial flow intensity,
both of which are suggestive of the magnetic mode of convection. Away from the TC, however,
the dynamo field does not have any notable effect on the depth or intensity of convection. It
is possible that the viscous–magnetic mode transition far from the TC takes place at higher
Λ, but this issue awaits further investigation with spherical shell magnetoconvection models
using realistic azimuthal field distributions.

Since the magnetic field does not significantly change the wavenumber of convection outside
the TC in spherical shell dynamo simulations, one might mistakenly conclude that magnetic
and non-magnetic convection are not much different in character. The action of a Λ ∼ 1 dipolar
magnetic field is to generate a vortical asymmetry in kinetic helicity via the Lorentz–Coriolis
force balance. It is remarkable that this effect, noted in earlier studies at E = 3 × 10−4

(Sreenivasan et al. 2014), persists at E = 5 × 10−6 despite the shorter lengthscale of the
magnetic field. As E is lowered further, we may expect the azimuthal field to be confined to
even smaller patches above and below the equator; nevertheless, the magnetic back reaction on
the global helicity distribution is likely to persist in the rapidly rotating regime. An exception
to this mechanism would be at large Rayleigh number, in which case strong buoyancy inhibits
vortex stretching by the Lorentz force, reducing the relative helicity generated by the magnetic
field (Sreenivasan et al. 2014).
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